

Development of Multilayer Readout Wiring for Large-format TES X-ray Microcalorimeter Arrays

Yuichiro Ezoe¹, Y. Ishisaki¹, S. Oishi¹, Y. Abe¹, T. Ohashi¹, H. Yoshitake², N. Sekiya², Y. Takei², N.Y. Yamasaki², K. Mitsuda², T. Morooka³, K. Tanaka⁴

> ¹ Tokyo Metropolitan University, ² ISAS/JAXA,³ SII, ⁴ SII Nanotech.

Motivation

Next X-ray astronomy satellites

DIOS (~2016) (Ohashi+05 SPIE)

Mapping of missing baryon

4.4 eV @ 5.9 keV

 \triangle AE ~ 2 eV, Area ~10x10 mm² @ 0.2-1.5 keV

Good ΔE \rightarrow Small pix $\Delta E \propto \sqrt{CT^2/\alpha}$

16x16 array w/ 200 μm sq TES

达 wiring width 10 μm

DIOS needs >20x20

Key technology

Superconducting readout wiring

Key for many missions (IXO, DIOS, Xenia)

Multilayer readout

Space saving

Min mutual inductance

Development plan

Wirings w/o TES

Wirings w/ TES

Design

Four 4x4, two 8x8, two 20x20 wirings in 4 inch Si

TES size 200 μm sq, pitch 500 μm sq for DIOS (Ezoe+09 LTD)

material

ID	upper wiring	lower wiring
MLR #1	Al t100 nm	Al t100 nm
MLR #2	Al t50 nm	Al t100 nm
MLR #3	Nb t50 nm	Al t100 nm
MLR #4	Nb t100 nm	Al t100 nm

Fabricated wiring samples

- MLR #1, #2: Al t50 or 100 nm + Al t100 nm
- MLR #3, #4: Nb t50 or 100 nm + Al t100 nm
 - High alignment accuracy (≲1 μm)
 - Good contact by eye check

Contact hole cut by Focused Ion Beam

Nb SiO₂ Al 0.8 μm

MLR #4 20x20 T

Resistance check at room T

All the 400 pix in each 20x20 R sample

Reason for open/short pix

miss-handling, dust/particle

 ∞ imperfection of SiO₂

Resistance check at low T

Transition of 2~4 pix in each 20x20 R sample

 $\overline{\mathbf{M}}$ Al-Al: Sharp transition, Large I_c (>100 μ A)

 \square Nb-Al : Slow transition, Small I_c (~10 μ A)

Current Status

- We have began to fabricate TES array
 - Al-Al samples are used (MLR #1, 2)
- Conditionings are ongoing
 - TES film upon multilayer wirings
 - Absorber on TES
 - Dry etching for membranes
- Will check RT, ΔE, I_c, noise, electrical cross talks b/w pixels

Summary

- We have designed and tested a novel readout wiring for a large format array of TES X-ray microcalorimeters.
- It minimizes wiring space and mutual inductance b/w hot and return lines.
- 20x20 wiring samples made of Nb/Al-Al have been successfully fabricated.
 - From R check, high 95~97 % process yield at room T is confirmed.
 - Al-Al wirings show sharp transition and large I_c, while Nb-Al do not. Impurity such as Ar or O may influence the latter.

Backup Slides

Contact between Nb & Al

Check chemical composition of contact hole

FIB → EDS (Energy Dispersive Spectroscopy)

MLR #4 20x20 R $O K_{\alpha} AI K_{\alpha}$ (b) Nb L Al K_{α} 5iO2 Nb Nb L 50 nm Ar K_{α} STUD 500 400 Al 100 nm 200 Ar K Energy (keV)

Impurities (Ar and O) influence the transition ?